

 「由於近年考古學的飛越發展,中國上古史已經面目全非,遠遠 超過傳統文獻歷史的範圍之外、、、今天的史學者不能不在寫 史的時候並用兩種資料、、、要照顧到由考古學新產生的古文 字史料及自然科學產生的歷史資料如地質、植物、海洋學、及同 位素化學等學科所產生的對人類生活環境和採集食物、用物有關 的數據和遺物。、、、建議將中國上古史用橫的眼光,以有關 的論述和研究這些論題所用的史料為標準,做一個嶄新的重 組。、、、、研究這幾個題目需要的學科與資料是不同,這樣 一來,過去中國上古史一個學科,現在要改成四個新的學科。各 科專業者要接受不同的訓練。」

張光直 (1997)對中國先秦史新結構的一個建議。《中國考古學與歷 史學之整合研究》,中央研究院歷史語言研究所會議論文集之四,1-12頁。

中國夏商周文明發展的氣候背景: 古環境資料的整合與評析

台灣大學地質科學系

魏國彦

2

2016/10/19

晚全新世中國南部石筍氧同 位素值的時空變異

魏國彥,莊智凱,李紅春 地質科學系 國立臺灣大學

SPATIOTEMPORAL PATTERNS OF SUBORBITAL VARIATION IN SPELEOTHEM OXYGEN ISOTOPES IN SOUTH CHINA DURING THE LATE HOLOCENE

> Kuo-Yen Wei, Zhi-Kai Chuang, Hong-Chun Li Dept. of Geosciences National Taiwan University

BACKGROUND

- Speleothem δ¹⁸O data of late Holocene 晚全新世洞穴石灰岩氧同位 素資料
- Proxy for precipitation affected by atm. circulation and local conditions 降水的代用指標,受到大氣環流與在地因素的調控
- Modulated by solar insolation 大趨勢受到太陽輻射的調控
- Coherent with Greenland Ice Core δ¹⁸O 趨勢與事件與格陵蘭冰芯氧
 同位素資料相呼應

http://bilingualmonkeys.com/wpcontent/uploads/2013/08/Stalactite-stalagmite.gif

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

journal homepage: www.elsevier.com/locate/epsl

East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China

Jason Cosford ^{a,*}, Hairuo Qing ^a, Bruce Eglington ^b, Dave Mattey ^c, Daoxiang Yuan ^d, Meiliang Zhang ^d, Hai Cheng ^e

湖北三寶洞石筍氧同位素紀錄,與北緯 33度夏季陽光照射量相符

The Holocene 20,2 (2010) pp. 257–264

Figure 4 Replication tests of isotope records of stalagmites from Sanbao Cave. The bold grey line is average summer insolation for 33°N. The dashed lines at 11.5, 9.5 and 6.5 ky BP denote monsoon precipitation boundaries for different periods of the Holocene

A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China

Jinguo Dong,¹ Yongjin Wang,^{1,*} Hai Cheng,^{1,2} Ben Hardt,² R. Lawrence Edwards,² Xinggong Kong,¹ Jiangying Wu,¹ Shitao Chen,¹ Dianbing Liu,¹ Xiuyang Jiang,¹ and Kan Zhao¹

華南四石筍氧同位素時間序列、400-5200年前,每10年一數據點。

CAVE LOCATIONS & PRECIPITATION SETTING

Precipitation mm/yr (1981 – 2000), from CN05.1

Modified after Guo et al 2016, Adv. Atmos. Sci., 33: 563, Fig. 3

四個石灰岩洞位置

三寶 SB 31.7°N

蓮花 LH 29.5°N

芙蓉 FR 29.25°N

董哥DG 25.3°N

Data source: Global Network of Isotopes in Precipitation

METHODS

- De-trended 去趨勢
- Empirical orthogonal function (EOF) 經驗正交函數
- Spectral and wavelet analyses 頻譜及小波分析
- Cross spectral analyses 交叉頻譜分析
- Cross wavelet analysis 交叉小波分析

Curve fitting with solar insolation (SI): $\delta^{18}O = a SI^2 + b SI + c. R^2 = 0.82-0.91$

TRENDS IN FOUR RECORDS

三寶 31.7°N

蓮花 29.5°N

芙蓉 29.25°N

董哥 25.3°N

DE-TRENDED $(\Delta^{18}O)$ **TIME SERIES**

三寶 31.7°N

蓮花 29.5°N

芙蓉 29.25°N

董哥 25.3°N

SUMMER RAINFALL PATTERNS IN SOUTHERN CHINA 華南兩個夏季兩型(1951-2014、66兩量站)-趙俊虎等人(2016)大氣科學,40卷,6期

 第40卷第6期
 大 气 科 学
 Vol. 40 No. 6

 2016年11月
 Chinese Journal of Atmospheric Sciences
 Nov. 2016

 起始虑,杨柳, 曾星宇, 等, 2016夏季长江中下游和华南西美雨型的环盗转征及预测信号 [J1, 大气科学, 40 (6): 1182-1198.
 Zhao Junhu, Yang Liu.

差役法、物源,習量子,等.2016. 夏季に山中上新州県南南美和屋田戸本福谷社及復期信号[J]. 大"(村子,40 (6): 1182-1198. Zhao Junhu, Yang Lu, Zeng Xingyu, et al. 2016. Analysis of atmospheric circulation and prediction signals for summer rainfall patterns in southern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (6): 1182-1198, doi: 10.3878/j.isan.1006-9895.1601.15249.

夏季长江中下游和华南两类雨型的环流 特征及预测信号

赵俊虎1 杨柳2 曾宇星1 封国林1,2

1 中国气象局国家气候中心中国气象局气候研究开放实验室,北京 100081
 2 扬州大学物理科学与技术学院,扬州 225002

用EOF找出不相從屬的 空間模態,及各模態時 間變化特徵

TEMPORAL VARIATION AND SPECTRA OF 4 EOF MODES & CLIMATIC PARAMETERS

Spectral and Wavelet analyses of

- coefficient time series of EOFs 1 4
- Sun spot number
- δ^{18} O of GISP 2 Ice Core
- K⁺ of GISP 2 Ice Core

Coefficient time series of EOF1

Coefficient time series of EOF2

Coefficient time series of EOF3

Coefficient time series of EOF4

Sun spot number

 δ^{18} O of GISP2

K⁺ of GISP2

Spectra of four EOF modes 四種模態的頻譜

模態1:湖南蓮花洞主導,夏初、商末、魏晉南北朝、唐 初較潮濕;周朝乾燥,有79、112、136年週期。

模態2:西南主導,四川貴州等地於西周晚期、魏晉南北、 唐、宋朝較乾;商朝、東漢、元朝潮濕;缺乏明顯週期。

Mode 2ts 4cave_400 - 5200yr B.P.

模態3:南北與中心的反差;商朝、西周中期,雨量集中於長江中游;夏朝、漢初、 漢末、唐宋於湖北及貴州雨量較大;有520(?)、209、73、40、27年週期性。

模態4:南北梯度(北方雨量較多),西周前期、東周初年北方(湖北) 較濕;而西周晚期、漢初、三國時南方較濕、約有565、58、42年週期

Mode 4ts 4cave_400 - 5200yr B.P.

太陽黑子數目:具有565、417、204、150、105、89、74年週期, 東周以後呈略微下降,西周、東周、元、明各有明顯低點

2 1/2 1/4 1/8

Sunspot numbers 400 - 5200yr B.P.

格陵蘭GISP2冰芯氧同位素δ¹⁸O:62、42年週期

格陵蘭GISP2冰芯K離子濃度:有40、27、20年週期

GISP2 K⁺_400 - 5200yr B.P.

RECOGNIZED PERIODS OF VARIOUS EOF COEFFICIENT AND CLIMATE TIME-SERIES FROM SPECTRAL ANALYSIS AT THE 99% AND 95% SIGNIFICANCE LEVELS

	EOF 1	EOF 2	EOF 3	EOF 4	Sun spot number	d ¹⁸ O in GISP2	nnK ⁺ in GISP2
99 % significance level	132, 116, 83, 79, 67, 57, 37 years		209, 27, 26 years	58, 42 years	204, 150, 128, 105, 89, 74, 58 years	62, 42 years	
95 % significance level		600, 37, 32 years	73, 40, 37, 28 years	73, 60, 49, 46, 35 years	97, 82, 64, 55, 51, 48, 43 years	155, 74 48, 45, 42, 38, 22 years	40, 27, 24, 20 years

Cross-spectral 4caves-EOF-mode1 - Sunspot Numbers

COHERENCE AND PHASE IN CROSS-SPECTRA BETWEEN EOF MODES AND CLIMATE PARAMETERS

> EOF 1 with sun spot EOF 2 with ISP2 δ^{18} O EOF 3 with sun spot EOF 4 with GISP2 δ^{18} O

CROSS SPECTRAL **ANALYSES** OF EOF 3 WITH SUN SPOT # GISP2 $\Delta^{18}O$ GISP2 **NSSK⁺**

Cross wavelet transform: 4cave-EOF-mode1 - Sunspot numbers

coherence

Mode1 vs. Sunspot: 125 \cdot 55 year periodicity

Spectral power

Wavelet coherence: 4cave-EOF-mode2 - GISP2 delta-018

n 9 0.8

0.7 -0.6

0.5

0.4 0.3

Mode2 vs. GISP2 $\delta^{18}O$

Mode3 vs. Sunspot numbers: ~220 (Suess Cycle) and~80 (Gleissberg) years' cycles

Wavelet coherence: 4cave-EOF-mode3-Sunspot numbers

Mode3 vs. GISP2 $\delta^{18}O$ 64 years

Cross wavelet transform: 4cave-EOF-modeg-GISP2 delta-180

Wavelet coherence: 4cave-EOF-mode3-GISP2 nssK+

Mode3 vs. GISP2 nssK⁺

Cross wavelet transform: 4cave-EOF-mode3-GISP2 nssK+

Wavelet coherence: 4cave-EOF-mode4-GISP2 delta-018

Mode4 vs. GISP2 δ^{18} O

PERIODS AND PHASE ANGLES BETWEEN EOF AND CLIMATE PARAMETERS OF HIGH COHERENCE WITH STRONG SPECTRAL POWER.

	Sunspot #	Sunspot #	GISP2 δ ¹⁸ Ο	Damon and Sonett (1989)
Mode 1	125 yrs. -84°	55 yrs. 0°		
Mode 3	<mark>220 yrs.</mark> -22°	<mark>80 yrs.</mark> 0°	64 yrs. 0°	208 yrs.: Suess cycle 88 yrs.: Gleissberg cycle

- 使用「經驗正交函數」得到近五千年來華南石筍氧同素共四個地 理模態的時空變異。
- 湖南蓮花洞表現最大變異,主導了第一模態(42%方差),夏初、
 魏晉南北朝、唐初雨量大,並與太陽黑子數在125年及55年週期有很好響應。
- 重慶芙蓉洞與貴州董哥洞主導了第二模態(24%方差),主要顯示西南一東北方向的變異,四川貴州等地魏晉南北、唐、 宋較乾,商朝、漢朝、元朝潮濕。
 - 第三模態(18%方差)代表中央站位與南北站位的反差性;商朝、 西周中期,雨量集中於湖南、四川;而夏朝、漢初、漢末、唐宋 則在湖北及貴州有較大雨量。與太陽黑子數目在~220年週期 (Suess cycle)、~80年(Gleissberg cycle)上有極佳之響應,並與北極 上空溫度在~64年的週期上響應。

結論 (二)

- 第四模態(15%方差)代表南北向雨量梯度;西周前期、 東周初年北方(湖北)較濕;而西周晚期、漢初、三國 時南方較濕、約有565、58、42年週期。
- 華南降雨的時空變異主要受控於太陽黑子數目、及北極 上空溫度變化,分別在220/125/80/55年週期,及64年週 期響應。
- 推測「太陽一東亞季風」的連結系透過銀河宇宙射線 (GCR)影響雲形成所導致。

SCIENCE'S COMPASS

Cosmoclimatolog

REVIEW: ATMOSPHERIC SCIENCE

Cosmic Rays, Clouds, and Climate

K. S. Carslaw,¹ R. G. Harrison,² J. Kirkby³

黃河與長江中下游降雨對於夏季季風指數有相反的反應 (王紹武等2009)

48

NEOLITHIC CULTURES IN CHINA

http://masudal108.pixnet.net/blog/post/50494295-%E9%AB%98%E4%B8%80%E4%B8%AD%E5%9C%8B%E5%8F%B2%3 Ach1(%E5%8F%B2%E5%89%8D~%E5%A4%8F)%E8%A3%9C%E5%85 %85

中國夏商周文明發展的氣候背景: 古環境資料的整合與評析

Climatic background of Xia-Shan-Zhou civilization development: integration and analyses of paleoclimate data

台灣大學地質科學系

2017/4/7

ODP 1202, Southern Okinawa Trough

2

甌江口紀錄的長江下游大洪水事件 (1880,3694,4230,5280,6667年前)

Wang K., et al., 2014, Quaternary International, 349: 79-89.

Circulation pattern during Asian summer monsoons 1971-2000

A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China

Jinguo Dong,¹ Yongjin Wang,^{1,*} Hai Cheng,^{1,2} Ben Hardt,² R. Lawrence Edwards,² Xinggong Kong,¹ Jiangying Wu,¹ Shitao Chen,¹ Dianbing Liu,¹ Xiuyang Jiang,¹ and Kan Zhao¹

After Hu et al., 2008. Precipitation = 189.08(Δδ¹⁸Ο) + 1217.4

上圖:和尚洞、 董哥洞石筍氧 同位素變化紀 錄。

下圖:過去五 千年長江中游 雨量變化(和 尚洞一董哥 洞差值~雨 量效應)。

2017/4/7

6

長江中游9000年來雨量頻譜分析顯示有三個週期:1184年、147年、94年。

2017/4/7

黃河北方的石筍紀錄: 蓮花洞(山西省陽泉市,38°10'N、113°43'E)

2017/4/7

8

Dong et al., 2016 unpublished

山西蓮花洞石筍氧同位素紀錄 (Dong et al., unpublished)

9

2017/4/7

小結論

- 做為中國大陸東緣的海域氣候背景,東海海表溫在夏商周時期並未比現今 溫暖,並未能支持竺可楨(1972)的結論。
- 4200年前左右有一次明顯顯的降溫事件,海表溫從28.5°C降到27.0°C。
- •夏朝末年到商王盤庚遷殷之前長江徑流流量係處於相對較低的狀態,換言之,長江流域較為乾旱。但是,在公元前2280年、1744年前後有兩次大規模的洪氾事件 (Wang et al., 2014)。
- · 從夏朝初年(公元前2000年)到商朝後期(公元前1150年)長江中游處於 一個東亞夏季季風減弱,較低雨量的時期,氣候少波動,相對穩定。
- 山西蓮花洞石筍氧同位素紀錄指示夏商周處於相對乾旱的情況(董,未發標)。