GIS and landscape archaeology: the South Cadbury Environs Project

Gary Lock and John Pouncett

University of Oxford, UK
Introduction

- South Cadbury (exc. 1960s)
 Iron Age hillfort – 7 ha. interior
 5th/6th Century AD – King Arthur
 Increasing importance of landscape archaeology
 Classic excavation reinterpreted in its landscape context

- Analytical GIS
 Functionality beyond data management and display
 1) Network Analysis – dating of geophysical anomalies using test pitting data
 2) Modelling colluviation – implications for visibility of archaeological remains
South Cadbury Environs Project

- Fieldwalking
- Geophysics
- Excavation
 - Shovel Testing (Topsoil only)
 - Test Pitting (Full excavation)
 - Trial Trenching
Dating Geophysics

- The Sigwells (West) dataset
 Good results from geophysics
 Focus for test-pitting/excavation
 Preliminary phasing (6 systems)
 Two main trends:
 1) WNW/ESE (System 1: AD200-400)
 2) NE/SW (System 2: 100BC-AD200)

- Ceramic phasing
 8 phases based on excavation
 1) Neolithic
 2) Early Bronze Age ≈ System 4
 3) Middle Bronze Age ≈ System 4
 4) Middle Iron Age 1 ≈ System 2
 5) Middle Iron Age 2 ≈ System 2
 6) Late Iron Age ≈ System 3
 7) Early Romano-British
 8) Middle Romano-British ≈ System 1
Network Dataset

- **Network dataset:**
 - Arcs (edges) and nodes (junctions)
 - Turn features

- **Heads-up digitising:**
 1) Edges linking start/end points of anomalies and intersections with other anomalies
 2) Nodes created at start/end points and all intersections regardless of connectivity

- **Cleaning:**
 - Checked against excavation plans
 - Remove gaps (e.g. entrances)
 - Link interrupted anomalies
Adding Complexity

- **Impedances**
 Initial travel ‘costs’ based on length of edge

- **Connectivity**
 Z-values used to establish connectivity
 Offsets apples to z-values to model stratigraphic relationships

- **Turn features**
 Contemporary features parallel or perpendicular to one another
 Impedances assigned to turns to model physical relationships

- **Building**
 Network dataset built in ArcGIS
Closest Facility Analysis

- **Network locations**
 Facilities – start/end points of network
 Incidents – contemporary spot date(s)
 Barriers – later spot date(s)

- **Network solution**
 Shortest route to every facility from each incident
 Individual solutions for each phase of activity
 Number of barriers decreases with time

- **Iterative process**
 ‘Logic’ matching
 Initial solutions – unconstrained
 Later solutions – constrained
Combining Solutions

- **Overlay**
 Overlay individual solutions starting with most recent phase

- **Aggregation**
 Anomalies dated on basis of either:
 1) number of arcs per phase
 2) total length of arcs per phase

- **Raw count**
 Number of times an arc is used in the solution for each phase
 Counts for individual arcs aggregated for each anomaly

- **Weighted count**
 Raw counts standardised and converted into percentages
Comparison of Results

Provisional phasing (left) and network-based phasing (right)
Testing the Methodology

- Assessment of robustness
 5 random datasets (Samples 1-5)
 Network locations created for spot dates using arc centroids
 Number of spot dates per phase kept constant
 Solutions compared against initial network-based solution

- Comparison of solutions
 Direct hits = solution identifies latest phase
 Indirect hits = spot dates one of possibilities
 Sample 2 (Phase 1) – systemic error no possible solution
 Multiple direct and indirect hits - high confidence in methodology

![Diagram showing network locations and solution hits]
Colluviation

- Long recognition of the importance of geomorphological processes and their impact on the archaeological record (e.g. Butzer’s Human Ecology, 1982)
 Linked to past land-use practices
 Often recognised and discussed within the context of surface survey
 Computer-based attempts to model and visualise, interpolating surfaces

- Archaeological Use of Flow Models
 Verhagen (1995) – most detailed consideration of methodology:
 Concluding emphases:
 Importance of DEM resolution and quality (interpolation artefacts can affect ‘flow’)
 Importance of small-scale local effects, problems with
 Large-scale generalised modelling
Test-Pitting Data

- **Study Area**
 12km by 9km centred on hillfort
 Localities 1 to 5

- **Regular Test Pits**
 241 test pits (139 with colluvial deposits)
 1m by 1m test pits on 100m grid

- **Targeted Test Pits**
 71 test pits (31 with colluvial deposits)
 Assessment of geophysical anomalies

- **Colluviation**
 Episodes of colluviation –
 Min = 1 Max = 7
 Cumulative depth ≤ 1.68m
Topographic Analysis

- Morphometric classification
 Six feature types (Wood 1996):
 1. Plane
 2. Channel
 3. Ridge
 4. Pass
 5. Peak
 6. Pit
 Scale dependent classification

- Fuzzy classification
 Individual datasets created for window sizes from 3 to 99
 6 new datasets created, one for each feature class
 Cell with values between 1 and 0 - confidence in classification
Colluvial Zones

- **Key topographic zones**
 - Transition between topographic highs and topographic lows (i.e. planes)
 - Net deposition at margins of topographic highs (‘depositional’ exceeds ‘erosional’ potential)
 - Net deposition at margins of topographic lows
 - No deposition or net erosion along centreline of topographic lows
Modelling Colluviation

- **Planar surfaces**
 - Isolate planes
 - Weight points on planes where ‘depositional’ potential is greatest

- **Slope**
 - Identify range of slope values for test pits with colluvial deposits

- **Curvature**
 - Weight upslope and downslope areas

- **Weighted surfaces**
 - Weighted colluvial zones based on interpolated depths of colluvium from test-pitting

<table>
<thead>
<tr>
<th>Surface parameters for test-pits with colluvial deposits</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>34.00m</td>
<td>189.00m</td>
<td>48.73m</td>
<td>36.37m</td>
</tr>
<tr>
<td>Slope</td>
<td>0.43°</td>
<td>12.88 °</td>
<td>3.81 °</td>
<td>2.49 °</td>
</tr>
<tr>
<td>Aspect</td>
<td>012 °</td>
<td>356 °</td>
<td>193 °</td>
<td>95.86 °</td>
</tr>
<tr>
<td>Curvature</td>
<td>-0.68</td>
<td>0.39</td>
<td>-0.06</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Colluvial Deposits

- Phases of Colluviation
 Modern – 43 test pits
 Medieval – 7 test pits
 Romano-British – 8 test pits
 Late Prehistoric – 8 test pits
 Early Prehistoric – 6 test pits
 Post Glacial – 9 test pits

- Depth of Colluvium
 Interpolate continuous surface for each phase of colluviation
 Include test pits with no evidence of colluvium (Depth = 0cm)
 Exclude undated colluvial deposits from all test pits
 Modify interpolated surface using weighted colluvial zones
Evaluating the Model

- **Modern colluviation**
 Locality 5 - cluster of test pits with modern colluvial deposits
 Weighted interpolated surface respects local topography
 Interpolated values correlate with measured depths
 Assumptions for model independent of data from test pits

- **Archaeological visibility**
 Relationships to areas of geophysical survey
 Correlation with known archaeological sites
Conclusions

- **Network Analysis**
 A robust methodology which can be applied to larger datasets
 Iterative process which highlights potential dating errors

- **Potential limitations**
 Methodology best suited to large-scale datasets with
 1) A widespread spatial distribution of spot dates
 2) Multiple spot dates for each phase of activity

- **Modelling Colluviation**
 Implications for archaeological visibility and landscape change
 No assumptions made about colluvial zones
 Independent validation of model using test-pitting data

- **A work in progress**
 Future work to include:
 1) Hydrological modelling
 2) Reconstruction of past land surfaces