子計畫三

2013年12月20日 發表評論 閱讀評論

計畫名稱:

台江內海地區環境變遷因子時空分析與土地利用預測模式建立

土地利用變遷是一複雜的過程,影響此過程之驅動力在空間、時間與人文面向及尺度進行,且各面向間於不同尺度下,亦存在複雜的交互作用。因此,跨時空間及人文面向之土地利用分析及模式建立,對於土地時空間變遷及規畫是一相當重要的工作。台江內海經歷荷據、清朝、日據、光復、近期等不同時期,其土地利用變遷同樣於時空間面向下,有不同的人文面向之變異,其間具備高度複雜的運作關係。而以往的土地利用模式之研究已驗證由下而上的模式,其可被應用討論都市擴張過程;由上至下模式,其可被應用於預測土地利用變遷、分析影響之驅動力及政策與情境評估。但是上述的模式是否適合台江內海土地利用變遷預測呢?且如何整合這兩類模式?是一國內外學者都相當注重的議題。此外,如何進一步整合空間統計(Spatial regression)方法於CLUE-s模式亦是一種要研究的主題。本研究目的除建立新的時空間分析方法外,並嘗試「建立台江內海地區環境變遷因子時空分析與土地利用預測模式,將上述模式應用於台江內海地區進行長時間土地利用變遷模擬,嘗試建立一適切的整合性變遷預測模式。

本研究具體貢獻包括:彙整歷史各期圖資,歸類出台江內海地區最適土地利用分類;整合文獻回顧法與人口及相關資料變異點分析,提出台江內海地區最適發展之不同時期(第一年);應用紮根理論(Grounded theory)分析及空間統計分析,找出不同時期台江內海地區變遷影響因素及變化過程;以空間迴歸於不同時間段探討台江內海地區土地利用變遷與影響因素關係。同時對個別模式、CA-Markov模式、Spatial regression-CLUE-s進行驗證,最後整合兩類預測模式(由下而上與由上而下整合模式),建立一整合概念模式及實質整合模式,並應用此整合模式模擬台江內海地區土地利用變遷,並與各別CLUE-s、ANN-CLUE-s、SLEUTH模式進行預測精確度比較,確立出最適合於台江內海地區的土地利用變遷預測模式(第二年)。並將此整合模式應用於台江內海地區未來的土地利用發展策略評估案例。最後與子計畫四合作發土地利用變遷時空間整合模式之雲端平台,提供國內外相關研究者使用(第一、二、三年)。

關鍵詞:台江內海地區、變遷變異點分析、土地利用時空間分析、土地利用時空間整合預測模式、時空間驅動力分析、時空間變遷分布與格局

________________________________________________________________

Project Title:

Developments of Spatio-temporal Analysis and Land Use Models for Analyzing Environmental Changes and Simulating Land Use Changes in the Region of Tai-jiang Inner Sea

Land-use change is a complex process which is processed under spatial, temporal and human dimensions. Moreover, the driving forces of the change are highly interacted with each other in spatial, temporal, human dimensions and scales. Therefore, it is an essential work to develop analysis methods and models across space, time and human dimensions and scales in land use modeling and planning studies. However, land use change in the surrounding areas of the Taijiang Inner Sea (Lagoon) is a complex process. Previous studies have applied bottom-up land use models, such as CA-Markov and SLEUTH to simulate urban expansion, and top-down models, such as Logistic-CLUE-s and ANN-CLUE-s to project land use change in Taiwan watersheds. However, there is a need to know if these models are applicable and to be integrated as a new model for land use change projection in a lagoon area. Moreover, future research topics would be the integration of spatial regression and CLUE-s, and the accuracy of land use change simulation of Taijiang Inner Sea areas. In this study, we aim to develop an integrated model of spatiotemporal analysis of environmental change factors and land use projection for the Taijiang Inner Sea areas. We further apply this model for assessing the accuracy of long-term land use change simulation in the Taijiang Inner Sea areas and establish a reliable land use change model.
Compared with previous studies, our contribution includes: summary of historical land use data of the Taijiang Inner Sea areas, land use classification, identification of the most suitable development periods by integrating literature reviews and analysis of variation point in population, and application of spatial regression for land use change and its environmental factors. Bottom-up models can be used in urban sprawl. On the other hand, top-down models analyze driving forces; simulate land use changes under various policies and scenarios. The accuracy of land use change in the Taijiang Inner Sea areas by using CA-Markov, Spatial regression-CLUE-s and the integrated model (a top-down and bottom-up integrated model) was compared with the accuracy by using CLUE-s, ANN-CLUE-s and SLEUTH models. We applied this model to simulate future land use in the Taijiang Inner Sea areas under various considerations (i.e. environmental protection and local development) as case studies for land use policies and planning assessment in the study area. Finally, this project will developed a cloud platform of the above integrated land use change model with the subproject 4 as a tool for international and local land-use studies.

Keywords: Taijiang Inner Sea Areas, Variation Point Analysis, Land-use Spatio-temporal Analysis, Integrated Spatio-temporal Land-use Model, Spatio-temporal Driving Force Analysis, Spatio-temporal Distribution and Patterns
  1. 目前尚無任何的評論。
  1. 目前尚無任何 trackbacks 和 pingbacks。