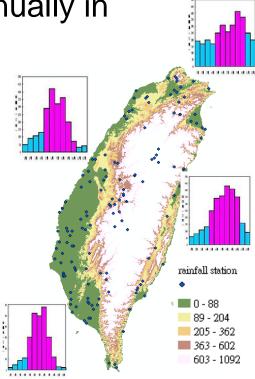

Application of Geographic Weighted Regression to Establish Average Rainfall-Altitude Functions Reflecting Spatial Variation

> Ling-Fang Chang October 9, 2009


Research Center for Humanities and Social Sciences, Academia Sinica

Location and Climate of Taiwan

- Taiwan is located in the East Asia and in the subtropical zone.
- Because of its geographical location, climate and topography, there is a lot of rainfall annually in Taiwan.
 - □ 2,515 mm/year

Interpolations Used to Estimate Regional Precipitation

- The precipitation data that is observed by a rainfall station can only represent the precipitation of that station, but not the precipitation values of other unknown station.
- To estimate local precipitation spatial distribution, interpolations have been used by the previous researchers to carry out estimation.

Approaches to Estimate Regional Precipitation

- There are several approaches to estimate the regional average precipitation from one rainfall station's precipitation data.
- The common spatial statistical methods include
 - □ Arithmetical averaging method
 - □ Thiessen polygons method
 - Isohyetal method
 - Reciprocal-distance-weighting method
 - Reciprocal square distance interpolation
 - □ Kriging method.
- Ray-Shyan Wu et al. (2003) compare the above-mentioned methods, they found that there were very few differences between the results of each spatial statistical method.

Multivariate Regression Models

- Yun-hsin Chang and Sheng-Tsai Li (2007) used multivariate geological statistical method to try to interpolate the more accurate precipitation spatial distribution.
- main variables
 - rainfall station data
- auxiliary variables
 - geographical factors
 - such as elevation, gradient, and slope
- Their study indicates
 - □ the amount of precipitation is often affected by the terrain effect
 - the precipitation would have some variations because of different leeward and windward directions and altitude changes

Advantages and Disadvantages of Multivariate Regression Models

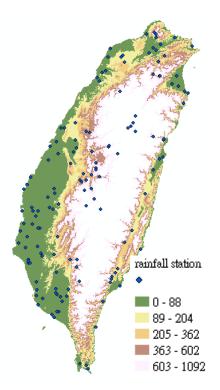
- Generally, precipitation function involves many spatial factors
 - elevation, gradient, and slope
- Multiple regression models
 - Advantages
 - Incorporate other factors except elevation
 - Disadvantages
 - increases the difficulty of predictor's data collection
 - have not consider the spatial variations (Platt, 2004)
 - Residuals maybe have spatial autocorrelation.

Factors of Average Annual Precipitation

- According to those previous studies, it is shown that the average precipitation increases with altitude.
- Since elevation is an important factor of precipitation, the above-mentioned studies point out that precipitation estimation often involves many spatial factors.
- Thus this study selects elevation as the independent variable, and average annual precipitation as dependent variable.

Objectives

The objectives of this research are to establish the relationship between annual precipitation and elevation, while considering the spatial variations and solving the problems of spatial autocorrelation in residuals.


Method

- Global Regression Model
 - □ **OLS** (Ordinary Least Squares)
- Examine the spatial autocorrelation of residuals
 - □ *Moran's I index* is used to detect spatial autocorrelation in the residuals
 - □ If standardized *Moran's I* Z(I) < 1.96, residuals have no spatial autocorrelation
 - □ If standardized *Moran's I Z*(*I*) > 1.96, residuals have spatial autocorrelation
- In order to solve the problem of residual with spatial autocorrelation, we use
 GWR Model (Geographically Weighted Regression) to modify.

Data Collection

Precipitation and elevation data resource

- Central Weather Bureau
- □ Hydraulic Engineering Office.
- Data recorded different period data
 - Choose the data which has least 30 years rainfall data. (World Meteorology Organization ,WMO)
 - 715 stations in total
- Arranged as average annual precipitation.

Taiwan Topographic Chart

Results of Global Regression Model

model

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

 $^{\rm y}$ is the average annual precipitation (mm)

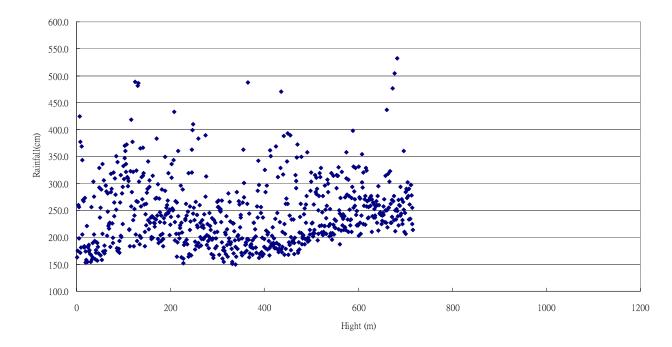
 x_1 is the elevation (m)

 β_0 , β_1 are the regression coefficients

 ϵ is the residual

R²=0.15

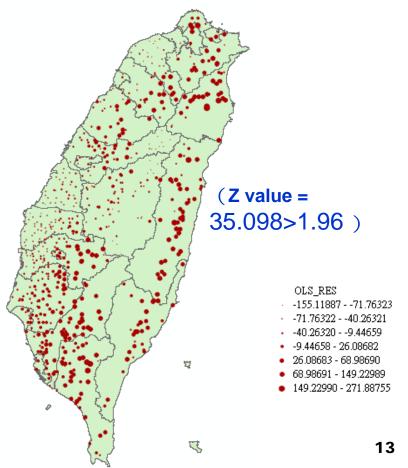
Table 1 global^a regression analysis results of average annual precipitation (n=705)


Parameter	Estimate	Std Estimate	Std Err	Т	P-Value
Intercept	228.46	2.46	2.471	92.801	0.0001
Elevation	0.0417	0.004	0.0036	11.441	0.0001

^aAverage regression result of the whole study area

Residual Plot – Global Regression

- The figure shows the residuals plot for global regression.
- The residuals is randomly distributed about the mean without any noticeable pattern.



OLS Spatial Autocorrelation Test

- Then all data were geo-referenced with coordinates, and were tested for spatial autocorrelation.
- The resulting Moran's I = 0.15675, and (Z(I) = 35.098078>1.96)

implying that the residuals had spatial autocorrelation, violating the assumption of linear regression.

Therefore, GWR was applied to modify the model.

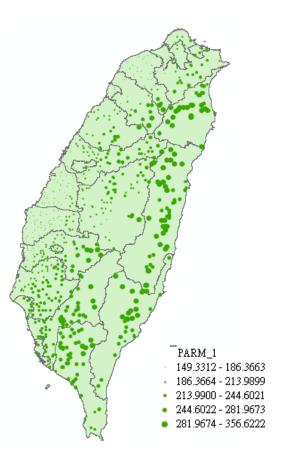
Results

GWR Model

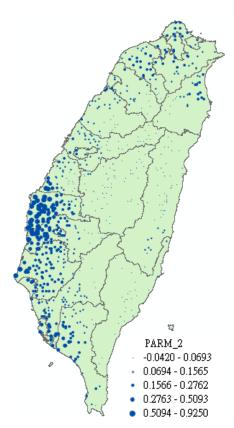
Model

$$y_i = \beta_0(u_i, v_i) + \beta_1(u_i, v_i) \cdot x_i + \varepsilon_i$$

 $\begin{array}{l} y_i \text{ is average annual precipitation of point } i \pmod{(mm)} \\ x_i \text{ is the elevation of point } i \pmod{(m)} \\ (u_i,v_i) \text{ is the coordinates of the } i\text{th point in space} \\ \beta_0(u_i,v_i), \beta_1(u_i,v_i) \text{ is therealization of the continuous function at point } i \\ \epsilon_i \text{ is the residual of point}(u_i,v_i) \end{array}$

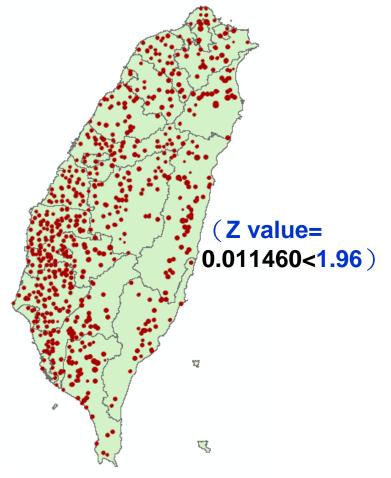

 \square R² increased from 0.15 (OLS) to 0.78 (GWR)

Spatial Variations of Intercepts


- The intercept of central mountain area of study area is greater than western plain area
- It means that the basic precipitation of mountain area is higher than the plain.
- The precipitation of Central and Southern Taiwan is higher than the plain of Northern Taiwan.

Results

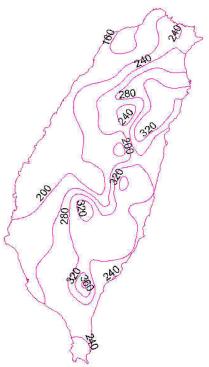
Spatial Variations of Elevation Coefficients


- Elevation regression coefficients of western plain area are higher than central mountain area.
- It means that when elevation is increased by 1 unit, the average annual precipitation of western plain area would increase more than the central mountain area.
 - Especially the plain areas from Central and Southern Taiwan
 - such as Yunlin, JiaYi, Tainan, and Kaohsiung
 - when elevation is increased by 1 unit, the average annual precipitation would increase more.

Spatial Autocorrelation Test for GWR

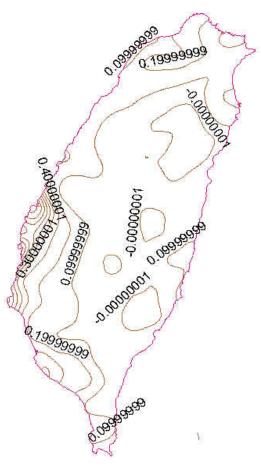
The testing result demonstrates that the Moran's I = 0.0313 , and (Z(I) = 0.011460 <1.96)

the residual with spatial autocorrelation was already modified


Discussions

Coefficient Range

- From the results of GWR model, it is known that the intercept coefficient range is 149 356, and the elevation coefficient range is -0.042 0.925.
- In order to understand the spatial variations of intercept and elevation regression coefficients, contour lines for intercept and elevation regression coefficients are drawn respectively.


Contour map of Intercept Coefficients

- From the isohyet distribution of intercepts showed that
 - the density of central mountain area is higher, namely the precipitation variations in the mountain area are greater.

Contour Map of Elevation Coefficient

- From the isohyet distribution of elevation regression coefficients, we are able to know that
 - the elevation regression coefficients in southwest plains have greater variations
 - namely the increase of every 1 unit of elevation, the average annual precipitation from southwest plains would increase more.
- The variations of central mountain area's elevation regression coefficients are not great
 - means the influence of elevation factor towards central mountain area is smaller.

Conclusions and Suggestions

R² Values

Global regression model R²=0.15

GWR

 \square R² increased to 0.78

Conclusions

- This study
 - considers spatial variations
 - corrects the spatial autocorrelation of residuals from traditional regression model.
- Compare to the traditional method of using multivariate regression analysis
 - GWR regression model that uses less parameters and spatial factors can also be considered.

Conclusions

This study

- discusses the average influence of elevation towards average annual precipitation
- GWR model is used to further discuss the spatial variations of elevation towards average annual precipitation simultaneously.

Suggestions

This study

- focuses on the relationship between average annual precipitation and elevation.
- not yet examined any temporal variations

It suggests that

- □ the prospective direction can focus on temporal variations.
- Besides, the spatial distribution of intercept and elevation regression coefficients could also be applied to the study of meteorological divisions further.

Thanks for Your Attention
 ~/Comments and Questions

