

e-Science in Geospatial Computation

Eric Yen 9 October 2009

Academia Sinica Grid Computing

- E-Science and the Landscape
- E-Infrastructure and Applications in Taiwan
- Geospatial Computing Examples by Grid
 - EUAsiaGrid and TWGrid
 - TeraGrid
 - EGEE
- Summary

Academia Sinica Grid Computing

e-Science Reminder

Definition

- "e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it." (by John Taylor, <u>http://www.e-science.clrc.ac.uk</u>)
- e-Science apps pulls, Information & Communication Technology pushes
- Objectives
 - Support research by e-Science, on data intensive sciences and applications require cross disciplinary distributed collaboration
- Application Driven, Deployment Approach since 2002
 - Only Grid Middleware and Toolkits are not sufficient
 - Data Intensive High Energy Physics, WLCG global collaboration requires
 Distributed Data Management and Analysis
 - First WLCG Grid Deployment Board (GDB) Meeting on 4 October 2002, Milano
 - Deploy large scale 24x7 production service for HEP application to allow debugging, increase robustness and learn how to operate could drive next generation e-Infrastructure

E-Science for GIScience

- Increasing data in quality and precision
- Sustainable access to geospatial materials
- Expedite mining new knowledge by geospatial resource federation and analysis
- Enable New Data Models and Knowledge Organization System - e.g., Spatial Semantics for Automating Geographic Information Processes
 - Metadata Semantics, Feature Semantics, Geographic knowledge semantics, and Spatial relation semantics
- Interdisciplinary Collaboration
- **BUT!!** We cannot take advantage of these evolution without a scientific knowledge infrastructure for the geosciences

- Leveraging e-Science paradigm for Geospatial Information Science
- Facilitating collaboration by virtual science environment
- Providing integrated environment to support variant researches
- Supporting computational capability and performance
- Incorporating workflow management, resource federation and long-term preservation services

Collaborating e-Infrastructures

Enabling Grids for E-sciencE

INFSO-RI-508833

Collaborating e-Infrastructures

Enabling Grids for E-sciencE

INFSO-RI-508833

Infrastructure Growth

Enabling Grids for E-sciencE

EGEE-III INFSO-RI-222667

Infrastructure Growth

Enabling Grids for E-sciencE

Grid Statistics at your finger tips

Bob Jones - EGEE09

EGEE-III INFSO-RI-222667

Enabling Grids for E-sciencE

Consistent doubling every 12-18 months. HEP largest users / contributors

AA/ES/other show strong increase

Domain	VOs	Users
AstroPhy & Astronomy	20	373
Comp Chem	4	347
Comp Sci	4	21
Earth Sci	7	142
Fusion	2	68
High Energy Phys	36	8577
Life Sci	9	379
"Regional"	26	1658
Other	28	1816
TOTAL	136	13381

CIC Portal: <u>http://cic.gridops.org/</u> Accounting Portal: <u>http://www3.egee.cesga.es/</u> >13,000 Registered Users

EGEE-III INFSO-RI-222667

EUAsiaGrid

- Identify and engage scientific communities which can benefit from the use of state-of-art Grid technologies;
- Disseminate EGEE middleware in Asian countries by means of public events and written and multimedia material;
- Provide training resources and organise training events for potential and actual Grid users;

Support the scientific applications and create a human network of scientific communities by building on and leveraging the e-Science Grid infrastructure.

www.euasiagrid.org www.euasiagrid.eu

Challenges of the Project

First Grid project targeting Asia-Pacific region

- Geographically large and culturally diverse area
- Uneven levels of adoption of Grids

Wide range of scientific domains addressed

- Consolidate on traditional areas and engage new communities
- Dissemination, Training and Support for applications must create a virtuous cycle

Sustainability of the e-infrastructure

- ✓ Need to define accurately a roadmap for the future
- Need to train the trainers to trigger teaching from local groups

Supported Applications

- Applications in the DoW
 - Computational Chemistry
 - Social Science
 - Bioinformatics and Biomedical research
 - High Energy Physics
 - Mitigation of natural disasters
- Newly identified areas
 - Digital culture and heritage
 - Weather forecast and climatology
 - Mathematical modelling
 - Biodiversity

FP7-INFRA-223791

e-Science in Asia

Diversity:

- Geographically large and culturally diverse in nature
- Level of scientific collaboration is reflected by the networking connectivity
- The region as a whole traditionally inexperienced in regional cooperation
- Grids in Asia
 - Disparate Grids with limited operations experience, making collaboration difficult.
- Why e-Science in Asia?
 - The global infrastructure is establishing quickly
 - Take advantage of sharing and collaboration to bridge the gap between Asia and the world
 - To address the challenge of regional cooperation
- EGEE Asia Federation and EUAsiaGrid
 - EGEE AF led by ASGC, Academia Sinica, Taiwan (Dr. Simon C. Lin)
 - EUAsiaGrid is to empower scientific collaboration throughout Asia
 - Demonstrate vigorous synergy with 29 EGEE sites and more than 8,000 CPU Cores and close to 3 Peta Bytes disk space for 12 VOs by early 2010.

TWGrid Introduction

- Consortium Initiated and hosted by ASGC in 2002
- Objectives
 - Gateway to the Global e-Infrastructure & e-Science Applications
 - Providing Asia Pacific Regional Operation Services
 - Fostering e-Science Applications collaboratively in AP
 - Dissemination & Outreach
 - Taiwan Grid/e-Science portal
 - Providing the access point to the services and demonstrate the activities and achievements
 - Integration of Grid Resources of Taiwan
 - VO of general Grid applications in Taiwan
- EUAsiaGrid: alignment for extension of e-Infrastructure and e-Science collaboration in Asia from 2008.

Academia Sinica

Architectu

What Do We Deliver ?

- e-Infrastructure Operation
 - 29 sites across 12 countries in Asia Pacific Region
 - > 8,000 Cores and >2.5 PB storages
 - Continuous monitoring of grid services & automated site configuration management
- Middleware R&D
 - Production quality MW distributed under friendly open source license model
 - Application integration
- E-Science & User Support: Managed process from first contact to production usage
 - Training
 - Expertise in grid-enabling applications
 - online helpdesk
 - Dissemination: attracting more collaborations

OSG

 Interoperability: expanding geographical reach and interoperability with collaborating e-infrastructuresable, sustainable, with commitments to quality of service

European Commission co-funded projects

SEE-GRID

EUMedGrid

Aroademaia Singica Grid Computing

EUIndiaGrid

EUChinaGrid

NAREGI

FUAsiaGrid

TWGRID

e-Science Applications in Taiwan

- High Energy Physics: WLCG, CDF, Belle
- Bioinformatics: mpiBLAST-g2
- Biomedicine: Distributing AutoDock tasks on the Grid using DIANE
- Digital Archive: Data Grid for Digital Archive Longterm preservation
- Atmospheric Science
- Earth Sciences: SeisGrid, GeoGrid for data management and hazards mitigation
- Ecology Research and Monitoring: EcoGrid
- BioPortal
- Humanity and Social Sciences
- General HPC Services
- Agriculture
- e-Science Application Development Platform

Academia Sinica Grid Computing

Disaster Mitigation on Earthquake In EUAsiaGrid

Academia Sinica Grid Computing Center and Academia Sinica Institute of Earth Science Taiwan

www.euasiagrid.org www.euasiagrid.eu

Significance

- Multi-disciplinary Application by e-Science paradigm
 - EDC: Event Details + Simulation + Mitigation
 - Sensor Networking: Federation (local + regional + global)
 - Seismic Wave Propagation Analysis: Source Analysis + Simulation
- Facilitate understanding of ground motion mechanism, rupture process, velocity structure and topographic characteristics (which might be changed after ground shakes)
- Expedite fast response and right protection to earthquake events
- Collaboration by EUAsiaGrid and EGEE
- Toward a sustainable daily services for researchers and FPGenrerad2px9blics

Motivation

- In Asia, natural disasters cause great losses on both economy and human lives. Earthquake is one of the most catastrophic natural disaster.
- Natural disaster is usually not predictable, cross boundary, abrupt and devastating. e-infrastructure boosts new power and new methodology to reduce the hazards.
 - New knowledge: understanding the underlying sciences
 - Much effective to compile and learn from experiences
 - More accurate and effective risk assessment and risk management
- Sharing and collaboration is the best strategy for hazards mitigation.
- Facilitate sustainable e-Infrastructure with real e-Science collaborations.
 FP7-INFRA-223791

EUAsiaGrid

Application Identification

- Selection Criteria
 - Partners' common interests
 - Impacts of casualty and economic loss
 - Regional collaboration/support has already been in place
 - Domain Knowledge & Scientific impacts
 - Technology Maturity, in terms of application integration in gLite
- Target Natural Hazards in EUAsiaGrid
 - Earthquake and Tsunami
 - Climate and Environmental Change: Carbon Flux Analysis and Climate Simulation
 - Sea Level Rising

FP7-INFRA-223791

Regional Collaboration

	Sensor Network	Seismic Wave Prop. Analysis	Seismic Data Center
Partners	VN, PH, ID, TW		
User Community	Philippine Institute of Volcanology and Seismology (PHIVOLCS), Vietnamese Academy of Science and Technology, The Incorporated Research Institutions for Seismology (IRIS), Global Seismic Network (GSN), Institute of Earth Science & National Central University, Taiwan, Local, Regional, and Global Disaster Mitigation Organization.		
Tech Maturity	TW- Most dense; VN- Sensor Stn ready; PH- expanding	Analysis Model and knowledge available; Cluster and gLite Resources in place; From Global model toward higher resolution regional/country model;	SeisGrid@TW, IRIS, GSN
Exemplar	Integrated Sensor Network by VN, PH and TW	Without local geological data, accurate analysis is not achievable. High resolution historical TW earthquake data sets.	Federation of available Data Centers
FP7-INFRA-22	3791		2

e-Science for Earthquake Disaster Mitigation

Seismic Wave Analysis

Earthquake Wave Simulation

Simulation of 2004 Earthquake in Taipei Basin, w/o Geological Structure consideration

Wave-Field Snapshot

Friday, October 9,

Seismic Wave Propagation Analysis

Seismic Wave Propagation Analysis

KMZ+

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0

0.00 0

0.00 0

0.00 0

KMZ0

Evt Out

Map Map

Map

Map

Мар

Map

Map

Map

(CSV) (XYZM) (EventList) (KMZ-

0.00

0.00

0.00

0.00

0.00 0

0.00

0.00

0

0

Earthquake Data Center I

Data Duration: 1900.1.1 ~ 2009.4.30

- 441,100+ records
- Data Schema
- Data Statistics
- Future
 - Federation
 - With other regional and global EDC
 - With earthquake events/mitigation resources

(Total 9771 Records) Previous Page.2 Next

24 1000

21,8000

21.8000

23.8000

23,9000

121.1000

120,4000

120 8000

121

0.0000

4.60 3

0.0000 4.70 3

14-13-00.00

14:28:00.00

42-00.00

105 1910-12-31 07:33:00.00 23.9000 121.6000

00:54:00.00

Count Μ <1 3,089 146,098 1~2 2~3 224,854 3~4 55,256 4~5 9,771 5~6 1,871 199 6~7 >7 42

Total 441,180

Earthquake Data Center II

3D Virtualization Viewing

Seismicity Events

Taiwan Seismicity Events

Status Bar I ♥ Navigation Control I Grid Grid Grid I Grid I Grid Grid Grid I Grid I Grid

Start View East View West View South View North View Top View

A

Architecture

Grid-based Computing Pathway

EUAsiaGrid

Scientific Values

- Inversion of Earthquake Source Kinematics
 - Rupture Process Analysis
 - Precise Regional Topographical Structure and Characteristics
- Large Area Accurate 3D Seismic Wave Propagat Analysis Model
 - At high freq and with complex geological structure
- Earthquake Impact Analysis & Mitigation
- Optimization of massive parallel computing
- Data Federation

TeraGrid GI Science Gateway

• Features

- Web Portal
- Toolkit provides user-friendly capabilities to perform geographic information analysis using computational Grids, and help non-technical users directly benefit from accessing cyberinfrastructure capabilities.
- Modules
 - Random spatial point generator
 - Distance-weighted interpolation of surfaces
 - Cluster detection algorithm (Gi*)
 - Bayesian geostatistical spatial model using MCMC
 - Spatiotemporal model with separable correlation structure

http://www.gisolve.org

MCMC Case Study

- Parallelize MCMC-based Bayesian inference for geostatistical models
 - Methods
 - Parallelizing matrix calculations within single chains
 - Running parallel chains on Grids
- TeraGrid provides an ideal computing environment for solving this class of problems
- Initial results demonstrate significant performance gains

AquaMaps: Mapping Biodiversity Hotspots and Assessing Impacts of Climate Change

Goals

- Long-term protection of marine biodiversity
- Implementation of Ecosystems Approach to Fisheries

Solution - Species Distribution Modeling

... produce computer-generated, reproducable species range maps for (evenually) all species using available data and a transparent, easily understandable and modifiable approach, so maps can be reviewed and improved by species experts.

This is where we're going....

D4Science: Collaborative virtual laboratories (VREs) in support to science

- working environment with access to multidisciplinary data sources and chain workflow processes
- Facilitates control of data sharing and collaborative reporting
- Provides access to GRID Infrastructure, storage and computing powers to all regional fisheries bodies

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

- Validating individual species range maps
 - Kaschner et al, 2006

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

AquaMaps – how good is it?

- Validating individual species range maps
 - Kaschner et al, 2006

dyscience

- Testing model performance in comparison to other approaches
 - J.Ready, K.Kaschner et al, accepted

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

AquaMaps – how good is it?

- Validating individual species range maps
 - Kaschner et al, 2006

dyscience

- Testing model performance in comparison to other approaches
 - J.Ready, K.Kaschner et al, accepted
- Validating species richness maps
 - K.Kaschner et al, in prep

os – Biodiversity Hotspots & Climate Change

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

AquaMaps – how good is it?

- Validating individual species range maps
 - Kaschner et al, 2006

d45CIENCE

- Testing model performance in comparison to other approaches
 - J.Ready, K.Kaschner et al, accepted
- Validating species richness maps
 - K.Kaschner et al, in prep

AquaMaps – what can we do with it? Biodiversity Maps

of species / cell

13	-	22
7	-	12
4	-	6
3	-	3
1	-	2
	13 7 4 3 1	13 - 7 - 4 - 3 - 1 -

Scombridae

45 of 57 species

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

AquaMaps – what can we do with it? Biodiversity Maps

Gadidae: 23 of 25 species

Barcelona, 22 September 2009

AquaMaps – Biodiversity Hotspots

Friday, October 9,

EGEE'09

AquaMaps – what can we do with it? Biodiversity Maps

of species / cell

766	-	4021
146	-	765
29	-	145
6	-	28
1	-	5

Ray-finned fishes 6544 of 29184 species

EGEE'09

Barcelona, 22 September 2009

Friday, October 9,

AquaMaps – what can we do with it? Biodiversity Maps

The world, all species: up to 400 billions computations

Ray-finned fishes 6544 of 29184 species

EGEE'09

Barcelona, 22 September 2009

Friday, October 9,

of species / cell

766	-	4021
146	-	765
29	-	145
6	-	28
1	-	5

of species

/ cell

766 -

146

29

6

1

4021

765

145

28

5

AquaMaps – what can we do with it? Biodiversity Maps

The world, all species: up to 400 billions computations

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

15 20 25

7100

Marine Mammals (n = 115)

Biodiversity loss [%]

Biodiversity gain [%]

Kaschner et al, in prep

AquaMaps – Biodiversity Hotspots & Climate Change

EGEE'09 Barcelona, 22 September 2009

Friday, October 9,

2 300

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

WorldFish Centre Project:

Hotspots, Fisheries and Climate Change in South China Sea

- 6,188 half degree cells
- 2,540 species
- 5+3 environmental parameters

Barcelona, 22 September 2009

EGEE'09

tre

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

up to 1 billion computations

Hotspots, Fisheries and Climate Change in South China Sea

- 6,188 half degree cells
- 2,540 species
- 5+3 environmental parameters

EGEE'09 Barcelona, 22 September 2009

tre

AquaMaps – what can we do with it? Modelling Impacts of Climate Change

Local multispecies map, several climate scenarios:

up to 1 billion computations

Antes Artista

Hotspots, Fisheries and Climate Change in South China Sea

- 6,188 half degree cells
- 2,540 species
- 5+3 environmental parameters

EGEE'09 Barcelona, 22 September 2009 Friday, October 9,

Implementing an Ecosystems Approach to Fisheries

Fishing activity / Catch

Fisheries

Figure A1.5 - World marine catches, main species groups by major marine fishing areas in 2002

EGEE'09

Barcelona, 22 September 2009

Friday, October 9,

Implementing an Ecosystems Approach to Fisheries

Fishing activity / Catch

Fisheries

EGEE'09

Barcelona, 22 September 2009

Friday, October 9,

Integrated Capture Information System

 product: harmonized and reallocated catch statistics

Implementing an Ecosystems Approach to Fisheries

Integrated Capture Information System

 product: harmonized and reallocated catch statistics

Fishing activity / Catch

Fisheries

ICIS

Requirements

- harmonization of time series data
- querying, with aggregation and reallocation rules
- combining biodiversity information with fisheries Catch time series
- spatial dimension and mapping (GIS)

Barcelona, 22 September 2009 Friday, October 9,

GEO Grid Grid-based e-infrastructure for geosciences

SIMS: VO based User Interface for Federating Distributed Databases

編集(2) 表示(2) お気に入り(2) ツール(2) ヘルプ(2)

ttps://gtin45.apprid.org/gridsphere/gridsphere1cid=1138

 User interface is constructed as JSR168 porlet on GridSphere

😰 🐔 🔎 MAR 👷 BANICA I 🚱 🝰 🖓 - 📴 🍇 - 🙆 🍇

Provides WMS Interface(in SIMS-II)

- Within the Service
- Access database using OGSA-DAI Java API
- Submit image analysis via GRAM
- Retrieve input data from GridFTP server

GEO Grid

Grid-based e-infrastructure for geosciences

Database Federation

Nature of Climate Data

- Global
- Long time series (modern and paleo)
- Multi-disciplinary: Atmosphere-Hydrosphere-Lithosphere-
 - **Cryosphere-Biosphere**
- Observation and Simulation
- \rightarrow Tremendous amount of data
- → Data amount increases astronomically ... (giga -> tera bytes)

Nature of Climate Change Research

- New Science in Development
- Earth System Science + Human Dimension
- Expanding Interdisciplinary Science

Nature of Climate Change Research

- New Science in Development
- Earth System Science + Human Dimension
- Expanding Interdisciplinary Science

Future Challenge:

- How to combine digital libraries of different disciplines into truly Multidisciplinary Global Digital Libraries for Earth System/Climate Change Research.

Summary

- e-Science envisages a whole new way of doing collaborative science
- For the sustainable Grid e-Infrastructure, we have to focus more on community building rather than just offering technologies.
- Asia Pacific Region has great potential to adopt the e-Infrastructure :
 - More and more Asia countries will deploy Grid system and take part in the e-Science world
 - However, applications of and for the Asia Pacific scientists are largely in lack which is crucial!!
- Extending from EGEE Asia Federation to EUAsiaGrid, we are widening the uptake of e-Science, by the close collaboration regionally and internationally