

Modeling Asian Urban Dynamics: Impacts of Economic Globalization on the Emergence of Desakota Regions in Taipei Metropolitan Area

Bing Sheng Wu

Department of Geography
Texas A&M University

Research Background

Characteristics of Asian urbanization:

- Emergence of the desakota region
 - Rapid urbanization takes place in rural areas with dense population
 - No clear-cut division between urban and rural areas
- Tightly interlock with global/local economic developments

Objectives

- Explore how economic globalization interacts with local economic developments and affects urbanization process/ urban pattern in Asia
- Incorporate GIS /remote sensing technologies, and socio-economic data to develop a CA-based urban model and simulate the dazzling Asian urban dynamics

The desakota model: an overview

- The conceptual model is proposed by McGee and Ginsburg in 1991
- "Desakota" is coined from two Indonesian terms --"desa (village)" and "kota (town)"
- Representing urbanization processes taking place in densely populated rural regions
- An intensive mixture of agricultural and nonagricultural activities

An ideal desakota spatial system

Driving factors for the desakota regions

Sectoral shifts

- Decrease of agriculture sector
- Increase of manufacturing / service sectors

Population dynamics

Rapid population growth in rural areas

Well-developed infrastructure

road network between urban and rural

Impacts of economic globalization

International division of labor

- Developed countries
 - Transnational corporations (TNCs)
- Developing countries
 - Small and medium enterprises (SMEs)
- Capital flows in Asia
 - Foreign direct investments (FDIs)
 - Subcontract /outsourcing

Data acquired

Remote sensing data

Image ID	Туре	Date	Coordinate System
1	SPOT	1993	TM2
2	Landsat	2001	TM2
3	Landsat	2008	TM2

• Statistical data set

- Population (1981 ~ 2007)
- Economic activities (1981 ~ 2007)
- FDI data (1981 ~ 2007)

Methodology

- Multi-scale Analysis
 - Hierarchically integrate global/local driving forces.
- Micro-scale transformation
 - Probability of transformation from non-urban to urban pixels
- Monte Carlo Simulation
 - Conjunction of multi-scale processes and micro-scale transformation into CA simulation

Methodological Framework

Multi-scale analysis

 Linear relationship between population and global/ local economic activities

$$Pop_{county} = f(Eco_{pri}, Eco_{sec}, Eco_{ter}, FDI_{manu}, FDI_{serv})$$

$$Pop_{district} = Pop_{county} \times w$$

 Linear relationship between population growth and converting pixels (non_urban → urban)

$$Area_{non_urban \to urban} = \alpha + \beta \times \Delta Pop_{district(t \to t+1)}$$

Micro-scale transformation

- Land cover change
 - Non_urban → urban pixels

Variables

- Distance to economic centers
- Distance to roads
- Terrain (slope)

Multinomial logistic model

 To estimate the probability of the conversion from non-urban to urban pixels

Prob_{non_urban \rightarrow urban} =
$$\frac{e^y}{1 + e^y}$$
 where $Y = \alpha + \sum_{i=1}^n \beta_i X_i$

- Linkage between multi-scale analysis and micro-scale transformation
- Randomly assign a float value (0 $^{\sim}$ 1) as a probability (Prob $_{\rm rand}$) to $i_{\rm th}$ non-urban pixel
- If Prob $_{rand}(i)$ < Prob $_{non_urban}(i)$, the i_{th} non-urban pixel will change its status.

0.60	0.87	0.43
0.92	0.19	0.24
0.69	0.12	0.40

0.64	0.88	0.12
0.23	0.33	0.89
0.59	0.93	0.43

changed	changed	
	changed	changed
	changed	changed

Prob rand

Prob non_urban→urban

Results

Simulation Results

Conclusions

- The combination of multi-scale factors reveals a new approach modeling Asian urbanization process with the impact of globalization.
- Desakota regions act as growing generators in Asian urban dynamics.
- FDI inputs plays a critical role in the desakota regions and affect urban growth in Asian countries.

Thank you

